If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+5a-300=0
a = 1; b = 5; c = -300;
Δ = b2-4ac
Δ = 52-4·1·(-300)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-35}{2*1}=\frac{-40}{2} =-20 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+35}{2*1}=\frac{30}{2} =15 $
| 8+-8+3x=14+-8 | | 42x-10-5x=14+37x-24 | | 2|2x-3|=4(3x-3) | | X2-9.0x=15.75 | | 15•w=45 | | -2x-x-3=17 | | 1/6(3x+10)=5/12(x-1) | | 24=8a | | 7x-2=5x+114 | | (4x+1)-7=12 | | 20^-6n+6=55 | | (2x-5)+(3x+4)=23 | | 8x+160=12x | | 5m+20=2m-6 | | 3(3x+10)=54 | | 12-3x-15=21 | | 3^5x+2=5^x-3 | | 10x÷1/2=6x-4 | | x+(3x+16)=104 | | -m^2-6m-15=0 | | 1-3(3-x)^2=28 | | 9^-7y=4 | | 2(x/7)-7=3 | | x÷2+20=50 | | 2z=16-24 | | 31+5z=56 | | 6x=0.5(x+55) | | 6x^2-30x+39=0 | | 5x-10+2x+5=x+6+6x-11 | | 2(2w-8)+2w=122 | | Y=5x-19=3x+11 | | 2x=1/2(x+24) |